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ABSTRACT — We propose a locally conformal TLM cell
that requires no change in the scattering algorithm and
eliminates the time step constraint imposed by graded
meshing. It also circumvents the need for time and space
interpolations required by multi- and sub-gridding schemes.
Simulation results confirm the accuracy and versatility of the
approach.
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I. INTRODUCTION

Irregular meshing has been an important issue for time-
domain based field solvers. It has been used to model
curved and moving boundaries [1,2]. To avoid graded
meshing which imposes the stable time step in the
smallest cell upon the entire mesh, methods based on
multi-gridding or sub-gridding [3-8] as well as hybrid
methods [9] have been developed. However, they require
interpolation in space and time that may cause errors and
even instability. We have developed a local mesh
modification method that is not subject to the minimal
time-step constraint, requires ne averaging and no change
in the scattering algorithm, Rather, a change in the size
and shape of a TLM cell due to an irregular boundary
position is translated into a change in its input impedance
at the cell interfaces with the regular computational mesh.

The locally conformal cell is a square TLM cell with a
regular impulse scattering matrix and a regular transit time,
but its link line impedances are transformed in such a way
that it has the characteristics of a fraction of a regular
square cell — a fractional cell. To connect such a
fractional cell to a regular cell, a scattering procedure
must be introduced at the interface between them; the
same applies to the connection between two different
conformal cells. The scattering procedure is equivalent to
the insertion of an ideal transformer between cells.

FRACTIONAL CELL WITH AN ELECTRIC WALL

Figure la shows a parallel plate waveguide consisting
of a chain of regular square 2D TLM shunt cells
terminated by an electric wall at a distance from the last
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regular cell which is a fraction of the cell size. Figure 1b
shows an electrically identical situation in which the
fractional cell has been replaced by a cell of standard size.
The properties of the latter cell must be such that the
impedance seen when looking to the right at the interface
is the same in both cases.

The inpul impedances of the fractional cell and the
standard-size cell at the interface are Z, and Zg,
respectively, where:

Z, = jZ tan{B.8)~ jZ,B.6 (0
Z, = jZ, tan(B.Al) = jZ B Al )

For equivalence of the two cases, Z_and Z, must be

identical, In terms of the characteristics of the cells shown
in Figure 2, the quantities in Eq 1 and Eq 2 are:

z =\J1,/2C,, B =02LC,

Z,=JLAC,+C)), p,=afL(C,+C,)

where £, C,. L., C, . L,» and C, are the inductances

3

and capacitances per unit length of the link lines.
Introducing Eq 3 into Eq 1 and Eq 2 and equating the two
impedances yields:

’ L ’ L -
2L C, = | —"—w JL (C +C Al (4)
ZCDw e C,+C, e y)

which ¢an be simplified to give:

L=-1,2 (5)
Al
Conservation of the scattering matrix and of the transit
time of the standard-size cell requires that the link line
impedances and the link line speeds must be the same in
x- and y-directions, i.e.:
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Figure 1 The equivalence between a fraction of the regular
TLM cell (fractional cell) and the standard-size
boundary cell; both are terminated by electric walls.

/é_x: Vc‘_y and JIC, = JL,C, (6
x ¥y

This requires:

L, =L, ad C =C, )

Finally, since the transit time for the fractional cell must
be the same as that of a standard-size boundary cell, i.e.:

JL,C, =,/LICX 8
Combining Eq 5 and 8 yields:
L Al
C,=-C,=2=C,—==C (&)
x ] LI o 5 ¥

Thus the properties of the short-circuited boundary
cell for any deformation ratic, §5/Al, are:

= & = -.L—y e Za i
\le \J C, Al (10)
Za = Lx :Zr‘i
V2C, Al

Connection of this cell to the reguiar mesh requires the
introduction of the following scattering procedure at the
nterface: -

Z,=Z,

n—1
B, |+l n+l 4, (11
Bi+l 2n _n—l AH-I

nt+l n+l

where n =3/ Al can be smaller or larger than 1, and the
definition of 4 and B are given in Figure 3.
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Figure 2 The equivalence of the regular cell and the boundary
cell. (a) A regular cell with two link lines of
Z, =4L,I/C,- (b) A boundary cell with two link

lines of Z_ = JL /C, and z, =,fLy/Cy -
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Figure 3 Connection of a regular cell to a boundary cell.

FRACTIONAL CELL WITH TWO ELECTRIC WALLS

The conformal boundary cell theory derived in the
previous section can be applied to the connection between
adjacent boundary cells; this allows a fractional cell
terminated on two adjacent sides by electric walls to be
modeled by a boundary cell; Figure4a shows the
equivalence between a fractional cell bounded by two
electric walls at some arbitrary positions, and a boundary
cell bounded by two electric walls at the regular positions.
Figure 4b shows the successive applications of the
conformal boundary cell theory, first by assuming that the
fractional cell has been shortened only along one direction,
and then by shortening the resulting boundary cell again
in the other direction; and the result is:
* ) " AIAE
That means, Eq 11 must be applied to the interfaces
between regions with Z and Z . In this situation,

n=29408, (AIA]).

(12

BOUNDARY-CONFORMAL MESH

Whenever a boundary is not located exactly halfway
between two nodes, conformal boundary cells can be used
to replace the fractional regular cells that are affected by
the boundary, Figure Sa depicts such a situation,
Replacing the regular cells affected by the boundary in a
TLM mesh with the boundary cells of the appropriate
impedance values produces a TLM mesh with cells having
the centers electrically displaced from their original
positions (Figure 5¢); this yield a locally conformal mesh.
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Figure 4 Modeling of a fractional cell bounded by two electric
walls by means of a boundary cell. (2) A fractional cell
terminated by two electric walls can be represented by
a locally conformal boundary cell with impedance
Z,=2,60, AAIAD . (b) The equivalence between
Z and 7 is derived by two successive applic;itions

of the boundary cell theory, first in the p-direction,
then in the x-direction

The example in Figure4 contains boundary cells that
represent fractional cells in one direction only. In fact, a
similar adjustment can be made in the other direction as
well.
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Figure 5 Replacing regular cells in a TLM mesh with boundary
cells of the appropriate impedance values produces a
locally conformal mesh. (a} A regnlar TLM mesh with
a slanted boundary. (b) Ideally, the slanted boundary
should be represented by regular cells of the
appropriate dimensions (bottom). However, time
synchronism would not be preserved in this case.
Therefore, adaptive cells having the appropriate wave
impedance values (top} are used to realize the
equivalent response. (c) Since all the link lines of a
boundary cell have the same impedance and the
equivalent response is realized via some interface
scattering operations, the field values at the center of
the boundary cells are those that would exist at the
center of the corresponding fractional cells.
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Figure 6 Connection between two boundary cells with different
COmpression ratios,

The interface between two boundary cells must be
handled properly as well because their impedance values
may not be the same. Consider the situation shown in
Figure 5 where two boundary cells with two different
compression ratios are connected to each other. As
mentioned earlier, the link lines in the boundary cells with
short-circuited termination have the following properties:

Celll: Z,=Z,=Z0 Al

(13)
Celt2: Z,=2,=2,0,/Al

Therefore, one must implemented a scattering procedure

at the interface between the two boundary cells as follows,

Figure 6:

n-1 2
Bil_|n+1l nel|| | where n=S2(14)
B, 2n n-l|] 4, T4
n+l n+l

In general, when the adjacent adaptive cells are
associated with different compression ratios in both
directions, then the ratio is: , = (cs'hlsly)/(a‘hgly),

YALIDATION

The theory of the conformal boundary cell is validated in
this section by two simulation examples. The TM and TE
mode cutoff frequencies of the WR28 waveguide are
obtained with the regular TLM cell and the locally
conformal TLM cell, respectively. The result is tabulated
in Table 1. The TM mode response is plotted in Figure 7.

As a second example, the TM and TE mode cutoff
frequencies of a circular waveguide (23 cm diameter) are
obtained with the regular cell and locally conformal cells,
respectively. The results are shown in Table 2. The TM
mode response is plotted in Figure 8. The data in Table 2
show that all the TE mode results obtained with the
conformal cell are better than those obtained with the
regular cell. For the TM cases, the boundary cell does not
always give better results than the regular cell; however,
the errors are of the same order of magnitude as those of
the regular cell.
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Table |: The TE and TM mode cutoff frequencies obtained
with the regular and locally conformal TLM cells.

Y V i

0.751 1.224 1577 1.682

1702 3.394 1438 3.500 0.100 0475
0.75% 1238 1502 1.708 1.002 1.595
0.615 2.288 0.500 2.008 0.421 0.313
0.760 1.248 1588 1.719 1.000 1.592
0.563 1.500 0.750 1.377 0,190 0.500
0.780 1.261 1538 1721 0.999 1.500
0.524 1.263 0.750 1,262 G080 0.625

Table 2: The TE and TM mode cutoff frequencies of a circular
waveguide (diameter = 23cm). The discrepancies for
the TM modes are due to insufficiently resolved high
spatial field variation close to the center of the
waveguide rather than to inaccurate boundary position.
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Figure 7 TM mode cutoff frequencies of a WR28 waveguide.
The R and C curves are computed using regular and
conformal cells, respectively. A/ = 0.015.
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Figure 8 TE mode cutoff frequencies of a 23 c¢m circular
wavegnide. The R and € curves are computed using
regular and conformal cells, respectively. A/ = 1.0 cm.
The inserts on the top depict the boundaries of a
regular mesh and a conformal mesh.
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CONCLUSION

A locally conformal TLM cell and mesh have been
presented in this paper. The feature has been integrated
into a meshing algorithm for the TLM discretization of
structures. The algorithm provides an unprecedented
modeling capability, without imposing & time step smaller
than the global TLM time step. Simulation examples have
been used to validate the theory and implementation. The
results show that, when the structure to be analyzed
involves only straight line boundaries parallel to the mesh
axes, the locally conformal mesh always yields more
accurate results than the regular mesh.
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