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ABSTRACT - We propose a locally conformal TLM cell 
that requires no change in the scattering algorithm and 
eliminates the time step constraint imposed by graded 
meshing. It also circumvents the need for time and space 
interpolations required by multi- and sub-gridding schemes. 
Simulation results confirm the accuracy and versatility of the 
approach. 
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I. INTRODUCTION 

Irregular meshing has been an important issue for time- 
domain based field solvers. It has been used to model 
curved and moving boundaries [1,2]. To avoid graded 
meshing which imposes the stable time step in the 
smallest cell upon the entire mesh, methods based on 
multi-gridding or sub-gridding [3-S] as well as hybrid 
methods [9] have been developed. However, they require 
interpolation in space and time that may cause errors and 
even instability. We have developed a local mesh 
modification method that is not subject to the minimal 
time-step constraint, requires no averaging and no change 
in the scattering algorithm. Rather, a change in the size 
and shape of a TLM cell due to an irregular boundary 
position is translated into a change in its input impedance 
at the cell interfaces with the regular computational mesh. 

The locally conformal cell is a square TLM cell with a 
regular impulse scattering matrix and a regular transit time, 
but its link line impedances are transformed in such a way 
that it has the characteristics of a fraction of a regular 
square cell - a fractional cell. To connect such a 
fractional cell to a regular cell, a scattering procedure 
must be introduced at the interface between them; the 
same applies to the connection between two different 
conformal cells. The scattering procedure is equivalent to 
the insertion of an ideal transformer between cells. 

FRACTIONAL CELL WITH AN ELECTRIC WALL 

Figure la shows a parallel plate waveguide consisting 
of a chain of regular square 2D TLM shunt cells 
terminated by an electric wall at a distance from the last 

regular cell which is a fraction of the cell size. Figure lb 
shows an electrically identical situation in which the 
fractional cell has been replaced by a cell of standard size. 
The properties of the latter cell must be such that the 
impedance seen when looking to the right at the interface 
is the same in both cases. 

The input impedances of the fractional cell and the 
standard-size cell at the interface arc Z,, and Z,, 
respectively, where: 

Zr, = jZ, tan(/?,cS) = jZ,p,S (1) 

Z,n = jZ, tan(p,Al)= jZJnAl (2) 

For equivalence of the two cases, Z,, and Z,O must be 
identical. In terms of the characteristics of the cells shown 
in Figure 2, the quantities in Eq 1 and Eq 2 are: 

z, =&pq, P” =qmi 

z, = &cqi> P, = qpzq 
(3) 

where L, , C, , L, , cx, L,, and c, are the inductances 

and capacitances per unit length of the link lines. 
Introducing Eq 3 into Eq 1 and Eq 2 and equating the two 
impedances yields: 

~mIzL.c.=~~ (4) 

which can be simplified to give: 

Lx = L, $ 

Conservation of the scattering matrix and of the transit 
time of the standard-size cell requires that the link line 
impedances and the link line speeds must be the same in 
x- andy-directions, i.e.: 
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Figure I The equivalence between a fraction of the regular 
TLM cell (fractional cell) and the standard-size 
boundary cell; both are terminated by electric walls. 

This requires: 

Lx =L, and C, = C, (7) 

Finally, since the transit time for the fractional cell must 
be the same as that of a standard-size boundary cell, i.e.: 

m=m 
Combining Eq 5 and 8 yields: 

(8) 

Thus the properties of the short-circuited boundaly 
cell for any deformation ratio, S/AI, are: 

z, = 
J 

L -Zr$ 

2cx 

Connection of this cell to the regular mesh requires the 
introduction of the following scattering procedure at the 
interface: 

where n = 6, AI can be smaller or larger than 1, and the 
definition of A and B are given in Figure 3. 

Figure 2 The equivalence of the regular cell and the boundary 
cell. (a) A regular cell with two hnk lines of 
z, = dL,Ic, (b) A boundary cell with two link 

linesof Z, =m and ZY =m- 

Figure 3 Connection of a regular cell to a boundary cell. 

FRAC’IIONU. CELL WITH TWO ELECTRIC WALLS 

The conformal boundary cell theory derived in the 
previous section can be applied to the connection between 
adjacent boundary cells; this allows a fractional cell 
terminated on two adjacent sides by electric walls to be 
modeled by a boundary cell; Figure4a shows the 
equivalence behveen a fractional cell bounded by two 
electric walls at sdme arbitrary positions, and a boundary 
cell bounded by two electric walls at the regular positions. 
Figure4b shows the successive applications of the 
conformal boundary cell theory, first by assuming that the 
fractional cell has been shortened only along one direction, 
and,tben by shortening the resulting botmday cell again 
in the other direction; and the result is: 

(12) 

That means, Eq 11 must be applied to the interfaces 
between regions with Z, and Z, In this situation, 

n = s,s, /(AlAl) 

BOUNDARY-CONFORMAL MESH 

Whenever a boundary is not located exactly halfway 
between hvo nodes, conformal boundaly cells can be used 
to replace the fractional regular cells that are affected by 
the boundary, Figure Sa depicts such a situation. 
Replacing the regular cells affected by the boundary in a 
TLM mesh with the boundary cells of the appropriate 
impedance values produces a TLM mesh with cells having 
the centers electrically displaced from their original 
positions (Figure 5~); this yield a locally conformal mesh. 
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Figure 4 Modeling of a fractional cell bounded by two electric 
walls by means of a boundary cell. (a) A fractional cell 
temunated by two electnc walls can be represented by 
a locally conformal boundary cell with impedance 
Z, = Z,S,J, ,(a,~,) (b) The equivalence between 

Z, and Za is derived by two successive applickons 
of the boundary cell theory, first in the y-direction, 
then m the x-direction 

The example in Figure4 contains boundary cells that 
represent fractional cells in one direction only. In fact, a 
similar adjustment can be made in the other direction as 
well. 

W 
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Figure 5 Replacing regular cells in a TLM mesh with boundary 
cells of the appropriate impedance values produces .a 
locally conformal mesh. (a) A regular TLM mesh with 
a slanted boundaty. @) Ideally, the slanted boundary 
should be represented by regular cells of the 
appropriate dimenstons (bottom). However, time 
synchronism would not be preserved in this case. 
Therefore, adaptive cells having the appropriate wave 
impedance values (top) are used to realize the 
equivalent response. (c) Since all the link lines of a 
boundaty cell have the same impedance and the 
equivalent response is realized via some interface 
scattering operations, the field values at the center of 
the boundary cells are those that would exist at the 
center of the corresponding fractional cells. 

Figure 6 Connection between two boundary cells with different 
compression ratios. 

The interface between two boundary cells must be 
handled properly as well because their impedance values 
may not be the same. Consider the situation shown in 
Figure 5 where hvo boundary cells with two different 
compression ratios are connected to each other. As 
mentioned earlier, the link lines in the boundary cells with 
short-circuited termination have the following properties: 

Cell 1 : Zx, = Z,, = Zo6, I Al 

Cell2: Z,, =Zy, =Z,S, IA1 
(13) 

Therefore, one must implemented a scattering procedure 
at the interface between the two boundary cells as follows, 
Figure 6: 

In general, when the adjacent adaptive cells are 
associated with different compression ratios in both 
directions, then the ratio is: n = (s,,J,~)/(s,,J,,), 

VALIDATION 

The theory of the conformal boundary cell is validated in 
this section by two simulation examples. The TM and TE 
mode cutoff frequencies of the WR28 waveguide are 
obtained with the regular TLM cell and the locally 
conformal TLM cell, respectively. The result is tabulated 
in Table I. The TM mode response is plotted in Figure 7. 

As a second example, the TM and TE mode cutoff 
frequencies of a circular waveguide (23 cm diameter) are 
obtained with the regular cell and locally conformal cells, 
respectively. The results are shown in Table 2. The TM 
mode response is plotted in Figure 8. The data in Table 2 
show that all the TE mode results obtained with the 
conformal cell are better than those obtained with the 
regular cell. For the TM cases, the boundary cell does not 
always give better results than the regular cell; however, 
the errors are of the same order of magnitude as those of 
the regular cell. 



Table I: The TE and TM mode cutoff frequencies obtained 
with the regular and locally conformal TLM cells. 

waveguide (diameter = 23cm). The discrepancies for 
the TM modes are due to insufficiently resolved high 
spatial field variation close to the center of the 
waveguide rather than to inaccurate boundary position. 

Figure 1 TM mode cutoff frequencies of a WR28 waveguide. 
The R and C curves are computed using regular and 
conformal cells, respectively. AI = 0.015”. 

Figure 8 TE mode cutoff frequencies of a 23 cm circular 
wavegwde. The R and C curves are computed using 
regular and conformal cells, respectively. AI = I .O cm. 
The inserts on the top depict the boundaries of a 
regular mesh and a conformal mesh. 

A locally conformal TLM cell and mesh have been 
presented in this paper. The feature has been integrated 
into a meshing algorithm for the TLM discretization of 
structures. The algorithm provides an unprecedented 
modeling capability, without imposing a time step smaller 
than the global TLM time step. Simulation examples have 
been used to validate the theory and implementation. The 
results show that, when the structure to be analyzed 
involves only straight line boundaries parallel to the mesh 
axes, the locally conformal mesh always yields more 
accurate results than the regular mesh. 
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